Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians.
نویسندگان
چکیده
Burgess Shale-type deposits are renowned for their exquisite preservation of soft-bodied organisms, representing a range of animal body plans that evolved during the Cambrian 'explosion'. However, the rarity of these fossil deposits makes it difficult to reconstruct the broader-scale distributions of their constituent organisms. By contrast, microscopic skeletal elements represent an extensive chronicle of early animal evolution--but are difficult to interpret in the absence of corresponding whole-body fossils. Here, we provide new observations on the dorsal spines of the Cambrian lobopodian (panarthropod) worm Hallucigenia sparsa from the Burgess Shale (Cambrian Series 3, Stage 5). These exhibit a distinctive scaly microstructure and layered (cone-in-cone) construction that together identify a hitherto enigmatic suite of carbonaceous and phosphatic Cambrian microfossils--including material attributed to Mongolitubulus, Rushtonites and Rhombocorniculum--as spines of Hallucigenia-type lobopodians. Hallucigeniids are thus revealed as an important and widespread component of disparate Cambrian communities from late in the Terreneuvian (Cambrian Stage 2) through the 'middle' Cambrian (Series 3); their apparent decline in the latest Cambrian may be partly taphonomic. The cone-in-cone construction of hallucigeniid sclerites is shared with the sclerotized cuticular structures (jaws and claws) in modern onychophorans. More generally, our results emphasize the reciprocal importance and complementary roles of Burgess Shale-type fossils and isolated microfossils in documenting early animal evolution.
منابع مشابه
Lobopodians
. Figure 1. Cambrian lobopodian diversity. (A) Aysheaia pedunculata, middle Cambrian Burgess Shale (NMNH-83942). (B) Claws of Aysheaia pedunculata (NMNH-365608). (C) Hallucigenia sparsa, middle Cambrian Burgess Shale (NMNH198658; courtesy of M. Smith, University of Cambridge. Nature 523, 75–78). (D) Microdictyon sinicum, early Cambrian Chengjiang (ELRC-30060; courtesy of G. Edgecombe, Natural H...
متن کاملHomology of Head Sclerites in Burgess Shale Euarthropods
The Cambrian fossil record of euarthropods (extant arachnids, myriapods, crustaceans, hexapods) has played a major role in understanding the origins of these successful animals and indicates that early ancestors underwent an evolutionary transition from soft-bodied taxa (lobopodians) to more familiar sclerotized forms with jointed appendages [1-3]. Recent advances in paleoneurology and developm...
متن کاملPellet microfossils: Possible evidence for metazoan life in Early Proterozoic time.
Microfossils resembling fecal pellets occur in acid-resistant residues and thin sections of Middle Cambrian to Early Proterozoic shale. The cylindrical microfossils average 50 x 110 mum and are the size and shape of fecal pellets produced by microscopic animals today. Pellets occur in dark gray and black rocks that were deposited in the facies that also preserves sulfide minerals and that repre...
متن کاملA Carboniferous Non-Onychophoran Lobopodian Reveals Long-Term Survival of a Cambrian Morphotype
Lobopodians, a nonmonophyletic assemblage of worm-shaped soft-bodied animals most closely related to arthropods, show two major morphotypes: long-legged and short-legged forms. The morphotype with stubby, conical legs has a long evolutionary history, from the early Cambrian through the Carboniferous, including the living onychophorans and tardigrades. Species with tubular lobopods exceeding the...
متن کاملBurgess Shale - Type Preservation and Its Distribution in Space and Time
—Burgess Shale-type fossil assemblages provide a unique record of animal life in the immediate aftermath of the so-called “Cambrian explosion.” While most soft-bodied faunas in the rock record were conserved by mineral replication of soft tissues, Burgess Shale-type preservation involved the conservation of whole assemblages of soft-bodied animals as primary carbonaceous remains, often preserve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 280 1767 شماره
صفحات -
تاریخ انتشار 2013